DOI: 10.1002/ange.200904676

Efficient Chiral N-Heterocyclic Carbene/Copper(I)-Catalyzed Asymmetric Allylic Arylation with Aryl Grignard Reagents**

Khalid B. Selim, Yasumasa Matsumoto, Ken-ichi Yamada, and Kiyoshi Tomioka*

Copper-catalyzed asymmetric allylic alkylation is an efficient C-C bond-forming reaction for obtaining optically active compounds.[1] The use of hard alkyl nucleophiles such as Grignard or organozinc reagents usually produces S_N2' products (y products) with excellent regio- and enantioselectivity. [2] In contrast, substitution with aryl metal nucleophiles produces insufficient regio- and enantioselectivity as well as low yield. [3,4] In 2007, Hoveyda and co-workers reported highly regio- and enantioselective arylation with organozinc reagents on very specific vinylsilane substrates.^[5] To date, however, there have been no reports of successful coppercatalyzed asymmetric allylic arylation (AAAr) of cinnamyltype substrates with aryl metal reagents, [6] even though the resulting trisubstituted carbon atom having two aryl groups is an important structural motif which is often found in pharmaceuticals (e.g., sertraline^[7] and tolterodine^[8]), biologically active compounds (e.g., indatraline[9]), and natural products (e.g., podophyllotoxin^[10]).

Recently, we reported a catalytic AAAr of arylmagnesium bromide to aliphatic allylic bromides, using a chiral amidophosphane **L1**–copper(I) catalyst, to afford high regionand enantioselectivity (up to exclusive γ selectivity, 81 % ee). The reactions of cinnamyl-type substrates, however, had poor γ selectivity (γ/α 16:84) (Scheme 1). Herein, we report a powerful method for enantioselective synthesis of a range of diarylvinylmethanes by unprecedented AAAr of arylmagnesium bromides to cinnamyl-type substrates efficiently cata-

Scheme 1. Amidophosphane L1-Cu-catalyzed AAAr with PhMgBr.

[*] Dr. K. B. Selim, Dr. Y. Matsumoto, Dr. K. Yamada, Prof. Dr. K. Tomioka Graduate School of Pharmaceutical Sciences, Kyoto University Yoshida, Sakyo-ku, Kyoto, 606-8501 (Japan) Fax: (+81) 75-753-4604

E-mail: tomioka@pharm.kyoto-u.ac.jp

[**] We thank JSPS and MEXT for financial support [a Grant-in-Aid for Scientific Research (A), a Grant-in-Aid for Scientific Research on Priority Areas "Advanced Molecular Transformations", and a Grantin-Aid for Young Scientist (B)]. K.B.S. thanks the Egyptian Government for a predoctoral fellowship.

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/anie.200904676.

lyzed by a newly designed chiral N-heterocyclic carbene $(NHC)^{[12]}$ -copper(I) complex **C2** (Figure 1). [13]

Figure 1. Chiral ligands and NHC-copper(I) complexes.

As illustrated in Table 1, a diethyl ether solution of PhMgBr (3 $_{\rm M}$; 0.20 mL, 0.6 mmol) diluted with CH $_{\rm 2}$ Cl $_{\rm 2}$ (0.25 mL) was added over a 15 minute period to a solution of 4-chlorocinnamyl bromide (1 $_{\rm a}$; 0.50 mmol) in CH $_{\rm 2}$ Cl $_{\rm 2}$ (1 mL) at $-78\,^{\circ}$ C. NHC–Cu catalysts (2 mol $_{\rm M}$) were prepared in situ by deprotonating the corresponding imidazolidinium salts L2–4 with nBuLi (6.6 mol $_{\rm M}$) in the presence of copper thiophenecarboxylate (CuTC). The catalyst derived from L2, [12] having a phenyl group on the nitrogen atom, afforded γ -2 $_{\rm a}$ with poor enantioselectivity (29 % $_{\rm ce}$) and low γ selectivity (γ / α 27:73). The catalyst derived from L3, having a mesitylmethyl substituent, [12] gave mostly α product α -2 $_{\rm a}$ with a slight amount of γ -2 $_{\rm a}$ having a 31 % $_{\rm ce}$ (γ / α 4:96). Fortunately, the in situ prepared L4–Cu catalyst exhibited high enantioselectivity (95 % $_{\rm ce}$) with moderate regioselectivity (95 % $_{\rm ce}$) with moderate regioselectivity

Table 1: Catalyst screening.[a] $4\text{-CIC}_6\text{H}_4$ Br+ PhMgBr+ PhMgBr+ PhMgBr $CH_2\text{Cl}_2$, -78 °C, 0.5 h $4\text{-CIC}_6\text{H}_4$ $4\text{-CIC}_6\text{H}_4$ 7-2a

Entry	Catalyst ^[b]	Yield [%]	$\gamma/\alpha^{[c]}$	ee [%] ^[c]
1	L2 –Cu	> 99 ^[d]	27:73	ent-29
2	L3 –Cu	$> 99^{[d]}$	4:96	31
3	L4 –Cu	$> 99^{[d]}$	62:38	95
4	C 1	98 ^[e]	67:33	96
5	C2	96 ^[e]	93:7	95

[a] PhMgBr (1.2 equiv) was added to the reaction mixture over a period of 15 minutes. Cinnamyl bromide **1a** was not detected by ¹H NMR analysis of the crude reaction mixtures. [b] Copper complexes derived from **L2–4** were prepared in situ using 2.2 mol% of ligand (**L2–4**), 2 mol% of CuTC, and 6.6 mol% of *n*BuLi. **C1** and **C2** (2 mol%) were used as isolated complexes. [c] Determined by GC analysis on a chiral stationary phase (Chiraldex B-DM). [d] Yield determined from ¹H NMR analysis of the crude reaction mixture. [e] Yield of isolated product.

Zuschriften

tivity (γ/α 62:38). An isolated air-stable NHC–CuCl complex **C1** derived from **L4** also gave comparable results to afford γ -**2a** with 96% *ee* and a γ/α ratio of 67:33 (Table 1, entry 4). We speculated that a ligand with bulky Ar groups might improve the regioselectivity by enhancing the rate of the reductive elimination step of the initially formed γ - σ -allyl–Cu^{III} intermediate. As expected, an isolated air-stable NHC–CuCl **C2** derived from **L5**, having an *ortho*-methyl group on the phenyl moieties (Ar = 2-MeC₆H₄), dramatically increased the γ selectivity to 93:7 without affecting the high enantioselectivity (95% *ee*; Table 1, entry 5).

Having established the optimal catalyst for cinnamyl-type substrates (Table 1, entry 5), we evaluated the arylation of other substrates. The reaction of substrates with electron-deficient aryl moieties, for example, a chloro substituent at the *ortho*, *meta*, or *para* position or a *para*-trifluoromethyl group, gave the γ products γ -2a-e with 92-96% *ee* and high regioselectivity (\geq 93:7) in high yield (Table 2, entries 1-5). Moreover, sterically demanding *o*-tolyl substrate 1f gave an

Table 2: Copper-catalyzed asymmetric allylic arylation of cinnamyl-type substrates using PhMgBr.

. 1 O O DIMER	2 mol % C2	Ph	
Ar ¹ Br + PhMgBr	CH ₂ Cl ₂ , -78 °C, 0.5 h	Ar ¹	
1	CH_2CI_2 , -76 C, 0.3 II	γ- 2	

Entry	1	Ar ¹	2	Yield [%] ^[a]	$\gamma/\alpha^{[b]}$	ee [%] ^[c]
1	1a	4-CIC ₆ H ₄	2a	96	93:7	95
2	1 b	3-CIC ₆ H ₄	2 b	99	95:5	93
3	1 c	2-CIC ₆ H ₄	2c	99	96:4	96
4	1 d	$4-CF_3C_6H_4$	2 d	99	93:7	93
5	1 e	$3,4-Cl_2C_6H_3$	2 e	99	95:5	92
6	1 f	$2-MeC_6H_4$	2 f	99	95:5	98
7 ^[d]	1 f	$2-MeC_6H_4$	2 f	99	97:3	97
8 ^[e]	1 f	$2-MeC_6H_4$	2 f	98	93:7	98
9 ^[f]	1 f	2-MeC ₆ H ₄	2 f	99	90:10	97
10	1 g	2-MeOC ₆ H ₄	2g	91	94:6	93
11 ^[g]	1 h	1-naphthyl	2 h	97	75:25	93

[a] Yield of isolated product. [b] Determined by GC analysis on a chiral stationary phase or by ¹H NMR analysis of the crude reaction mixture. [c] Determined by HPLC analysis on a chiral stationary phase after conversion into the corresponding terminal alcohol by hydroboration/oxidation or by chiral GC analysis. [d] Used 4 mol% of C2. [e] Used 1 mol% of C2. [f] Used 0.5 mol% of C2. [g] Reaction run for 1 h.

unprecedented high enantioselectivity (98% ee) and a high γ/α ratio (95:5; Table 2, entry 6). The catalyst amount affected the selectivity of the reaction; [11] gradually decreasing the catalyst loading from 4 to 0.5 mol % did not affect the enantioselectivity, whereas the γ/α ratio decreased from 97:3 to 90:10 (Table 2, entries 7–9). These results indicate that the high catalyst loading accelerated the reaction, thereby preventing the formation of the undesirable diphenylcuprate intermediate, which might lead to an α product through π -allyl equilibration. The optimum amount of C2 was determined to be 2 mol %. Allylic bromide 1g with an omethoxy group afforded γ -2g with 93% ee and 94:6 γ/α selectivity (Table 2, entry 10). The more sterically hindered naphthyl substrate 1h gave γ -2h with 93% ee in 75:25 regioselectivity (Table 2, entry 11). [16]

The enantioselective arylation of o-methylcinnamyl bromide (**1 f**) with p-fluoro-, p-chloro-, and p-methylphenyl Grignard reagents proceeded in high yield with excellent regio- and enantioselectivity (up to 96% yield, γ/α 97:3, 98% ee; Table 3, entries 1–3). High regio- and enantioselec-

Table 3: Copper-catalyzed asymmetric allylic arylation of 1c and 1f using various aryl Grignard reagents.

$$Ar^{1} \xrightarrow{Br + Ar^{2}MgBr} \frac{2 \text{ mol } \% \text{ C2}}{CH_{2}Cl_{2}, -78 \text{ °C, 0.5 h}} Ar^{1} \xrightarrow{Ar^{2}}$$

Entry	1	Ar ¹	Ar ²	2	Yield [%] ^[a]	$\gamma/\alpha^{[b]}$	ee [%] ^[c]
1	1 f	2-MeC ₆ H ₄	4-FC ₆ H ₄	2i	96	97:3	97
2	1 f	$2-MeC_6H_4$	4-CIC ₆ H ₄	2j	96	94:6	97
3	1 f	$2-MeC_6H_4$	4-MeC ₆ H ₄	2 k	94	96:4	98
4	1 c	2-CIC ₆ H ₄	0	21	68 ^[d]	97:3	92

[a] Yield of isolated product. [b] Determined by GC or ¹H NMR analysis of the crude reaction mixture. [c] Determined by HPLC analysis on a chiral stationary phase after conversion into the corresponding terminal alcohol by hydroboration/oxidation or GC analysis on a chiral stationary phase. [d] Reaction run for 1 h. 1c was recovered in 22 % yield.

tivity (γ/α 97:3, 92% *ee*) were also observed with the methylenedioxyphenyl Grignard reagent leading to γ -21 in acceptable yield (68%) along with 22% recovery of the starting material (Table 2, entry 4).

The *ee* value of γ -**2e** was determined after transformation into alcohol **3**, the enantiomer of an alcohol with established stereochemistry, ^[17] using a hydroboration/oxidation protocol (Scheme 2). Product **3** is an intermediate in the synthesis of sertraline, a major pharmaceutical for the treatment of depression.

Scheme 2. Conversion of γ -**2e** into **3**, a synthetic intermediate of sertraline. 9-BBN = 9-borabicyclo[3.3.l]nonane, THF = tetrahydrofuran.

In conclusion, we developed an air-tolerant monodentate chiral NHC–CuCl catalyst for highly enantio- and γ -selective copper-catalyzed allylic arylation of cinnamyl bromides using aryl Grignard reagents, which affords the versatile chiral building blocks diarylvinylmethanes.

Experimental Section

Typical procedure for the AAAr reaction (Table 2, entry 1): A dry 10 mL tube was charged with NHC-CuCl catalyst C2 (7.1 mg,

0.02 mmol) and allylic substrate 1a (0.50 mmol). Distilled CH₂Cl₂ (1 mL) was then added to the mixture which was then cooled to -78 °C and stirred for 10 min. A solution of PhMgBr (3 м in Et₂O; 0.20 mL, 0.6 mmol) diluted with CH₂Cl₂ (0.25 mL) was added over 15 min using a syringe pump. Once the addition of PhMgBr was complete, the reaction mixture was stirred for 30 min at -78 °C. The mixture was diluted with Et₂O (6 mL) and quenched with aqueous 10% HCl (0.5 mL). The aqueous phase was separated and extracted with Et₂O (3×3 mL). The combined organic layers were dried over Na₂SO₄, filtered, and concentrated in vacuo. The products were purified by silica gel column chromatography (n-pentane/Et₂O 20:1) to give a 93:7 mixture of γ -2a with 95% ee and α -2a (110 mg, 96%) as colorless oil: $[a]_D^{21} = -9.5$ (c = 0.52, CHCl₃). Enantio- and regioselectivity were determined by GC analysis on a chiral stationary phase: Chiraldex B-DM ($25 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ } \mu\text{m}$), initial temp. $60 \,^{\circ}\text{C}$, 0.5 °Cmin⁻¹, intermediate temp. 120 °C, 30 min, 0.5 °Cmin⁻¹, final temp. 160 °C, retention times (min): 163.6 (minor γ-2a), 164.6 (major γ -**2a**), and 200.5 (α -**2a**).

Received: August 22, 2009 Revised: September 12, 2009 Published online: October 15, 2009

Keywords: allylic compounds · asymmetric catalysis · copper · magnesium · N-heterocyclic carbenes

- [1] A. S. E. Karlström, J.-E. Bäckvall in Modern Organocopper Chemistry (Ed.: N. Krause), Wiley-VCH, Weinheim, 2001, p. 259.
- [2] For recent reviews of Cu-catalyzed asymmetric allylic substitution: a) A. Kar, N. P. Argade, Synthesis 2005, 2995-3022; b) H. Yorimitsu, K. Oshima, Angew. Chem. 2005, 117, 4509-4513; Angew. Chem. Int. Ed. 2005, 44, 4435-4439; c) A. Alexakis, C. Malan, L. Lea, K. Tissot-Croset, D. Polet, C. Falciola, Chimia 2006, 60, 124-130; d) C. Falciola, A. Alexakis, Eur. J. Org. Chem. 2008, 3765-3780; e) A. Alexakis, J.-E. Bäckvall, N. Krause, O. Pàmies, M. Diéguez, Chem. Rev. 2008, 108, 2796-2823; f) S. R. Harutyunyan, T. den Hartog, K. Geurts, A. J. Minnaard, B. L. Feringa, Chem. Rev. 2008, 108, 2824-2852.
- [3] a) C. C. Tseng, S. D. Paisley, H. L. Goering, J. Org. Chem. 1986, 51, 2884-2891; b) J.-E. Bäckvall, E. S. M. Persson, A. Bombrun, J. Org. Chem. 1994, 59, 4126-4130.
- [4] A maximum of 30% ee has been achieved in copper-catalyzed AAAr using aryl Grignard reagent: a) G. J. Meuzelaar, A. S. E. Karlstrom, M. Van Klaveren, E. S. M. Persson, A. Del Villar, G. van Koten, J.-E. Bäckvall, Tetrahedron 2000, 56, 2895-2903;

- b) A. Alexakis, C. Malan, L. Lea, C. Benhaim, X. Fournioux, Synlett 2001, 927 - 930; c) H. Seo, D. Hirsch-Weil, K. A. Abboud, S. Hong, J. Org. Chem. 2008, 73, 1983-1986; d) C. A. Falciola, A. Alexakis, Chem. Eur. J. 2008, 14, 10615-10627.
- [5] M. A. Kacprzynski, T. L. May, S. A. Kazane, A. H. Hoveyda, Angew. Chem. 2007, 119, 4638-4642; Angew. Chem. Int. Ed. **2007**, 46, 4554 – 4558.
- [6] For iridium-catalyzed AAAr using arylzinc reagents with high ee values but lower regioselectivity: a) A. Alexakis, S. El Hajjaji, D. Polet, X. Rathgeb, Org. Lett. 2007, 9, 3393 – 3395; b) D. Polet, X. Rathgeb, C. A. Falciola, J.-B. Langlois, S. E. Hajjaji, A. Alexakis, Chem. Eur. J. 2009, 15, 1205-1216.
- [7] A. L. McRae, K. T. Brady, Expert Opin. Pharmacother. 2001, 2, 883 - 892.
- [8] C. J. Hills, S. A. Winter, J. A. Balfour, Drugs 1998, 55, 813-820.
- [9] a) K. P. Bogeso, A. V. Christensen, J. Hyttel, T. Liljefors, J. Med. Chem. 1985, 28, 1817-1828; b) J. Hyttel, J. J. Larsen, J. Neurochem. 1985, 44, 1615-1622.
- [10] M. Gordaliza, P. A. García, J. M. Miguel del Corral, M. A. Castro, M. A. Gómez-Zurita, Toxicon 2004, 44, 441 – 459.
- [11] K. B. Selim, K. Yamada, K. Tomioka, Chem. Commun. 2008, 5140 - 5142
- [12] Y. Matsumoto, K. Yamada, K. Tomioka, J. Org. Chem. 2008, 73, 4578-4581.
- [13] For copper-catalyzed asymmetric allylic alkylation using monodentate NHC and alkyl Grignard reagents; a) S. Tominaga, Y. Oi, T. Kato, D. K. An, S. Okamoto, Tetrahedron Lett. 2004, 45, 5585-5588; see also reference [4c]: bidentate NHC and dialkylzincs; b) A. O. Larsen, W. Leu, C. N. Oberhuber, J. E. Campbell, A. H. Hoveyda, J. Am. Chem. Soc. 2004, 126, 11130-11131; c) J. J. Van Veldhuizen, J. E. Campbell, R. E. Giudici, A. H. Hoveyda, J. Am. Chem. Soc. 2005, 127, 6877 -6882: bidentate NHC and vinylaluminums; d) Y. Lee, K. Akiyama, D. G. Gillingham, M. K. Brown, A. H. Hoveyda, J. Am. Chem. Soc. 2008, 130, 446-447. For copper-catalyzed AAAr of vinylsilane substrates using bidentate NHC and diarylzincs, see ref. [5].
- [14] E. S. M. Persson, M. van Klaveren, D. M. Grove, J.-E. Bäckvall, G. van Koten, Chem. Eur. J. 1995, 1, 351 – 359.
- [15] J.-E. Bäckvall, M. Sellen, B. Grant, J. Am. Chem. Soc. 1990, 112, 6615-6621. See also ref. [3].
- [16] The current conditions were also applicable to a linear allylic bromide although the level of enantioselectivity was slightly lower than our previous report (reference [11]); the reaction of hex-2-enyl bromide with PhMgBr gave γ product with 74% ee and a 91:9 γ/α ratio in 98% yield.
- [17] G. J. Quallich, U.S. Patent 5196607, March 23, 1993.

8891